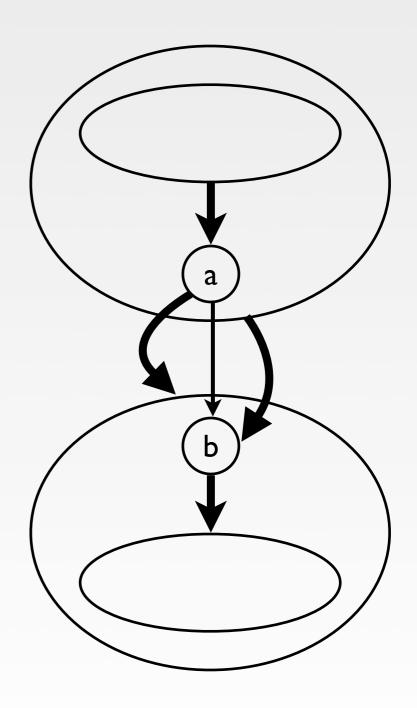
Überdeckungsrelation

- Def.: a überdeckt b (a C b) wenn
 - b von a dominiert wird,
 - ▶ alle Alternativen, die von b dominiert werden, auch von a dominiert werden $(D(b) \subseteq D(a))$ und
 - ▶ alle Alternativen, die a dominieren, auch b dominieren ($\overline{D}(a) \subseteq \overline{D}(b)$).
- Unabhängig vorgeschlagen von Gillies (1959), Fishburn (1977), and Miller (1980)
- Die Überdeckungsrelation ist eine transitive Teilrelation der Dominanzrelation.



Unüberdeckte Menge

- Def.: Die unüberdeckte Menge (UC für "uncovered set") besteht aus den Alternativen, die von keiner Alternative überdeckt werden.
 - Maximale Elemente bezüglich der Überdeckungsrelation
 - Die unüberdeckte Menge ist niemals leer
- Wenn ein Condorcet-Gewinner existiert, enthält ihn die unüberdeckte Menge als einziges Element.
- Satz: In allen Dominanzgraphen gilt $CO(>) \subseteq UC(>)$, $BA(>) \subseteq UC(>)$, $SL(>) \subseteq UC(>)$ und $UC(>) \subseteq GO(>)$.
 - Beweis: Tafel.
- Satz: In allen Dominanzgraphen gilt $UC(>) \cap SC(>) \neq \emptyset$.

Berechnung der unüberdeckten Menge

- Die unüberdeckte Menge kann in $O(m^3)$ Zeit berechnet werden.
 - Berechnung der Überdeckungsrelation in O(m³)
 - Prüfe für jede Kante (Anzahl: (m²-m)/2), ob sie eine Überdeckungskante ist
 - Bestimmung der maximalen Elemente
- In Turniergraphen kann die unüberdeckte Menge in O(m^{2,38}) Zeit berechnet werden.
 - Satz (Shepsle & Weingast, 1984): In Turniergraphen besteht die unüberdeckte Menge genau aus den Alternativen, die alle anderen Alternativen über einen Pfad der maximalen Länge 2 erreichen.
 - Beweis: Tafel.
 - Berechne M=V²+V+E (wobei V die Adjazenzmatrix des Turniergraphen, in der jede I durch 0 ersetzt wurde, und E die Einheitsmatrix ist)
 - UC besteht aus genau den Elementen, deren Zeilen in M keine Null enthalten.
 - Matrixmultiplikation mit Algorithmus von Coppersmith & Winogard (1990): O(m^{2,38})

Wünschenswerte Eigenschaften

- Monotonie (M)
 - Eine Alternative bleibt in der Lösungsmenge, wenn sie gestärkt wird.
- Supermengeneigenschaft (S)
 - Die Lösungsmenge ändert sich nicht, wenn Verlierer gestrichen werden.
- Idempotenz (I)
 - Die Lösungsmenge ist invariant unter wiederholter Anwendung des Konzepts.
- Unabhängigkeit von Verlierern (U)
 - Die Lösungsmenge ist invariant unter Änderungen von Kanten, die nicht in der Lösungsmenge liegen.
- **γ***
 - Die Lösungsmenge der Vereinigung einer Familie von Teilgraphen darf nicht alle Alternativen außer a enthalten wenn a in der Lösungsmenge jedes Teilgraphen liegt.
- In Turniergraphen gibt es genau ein minimales
 Lösungskonzept, das all diese (und weitere) Eigenschaften
 erfüllt: Die minimale Überdeckungsmenge.

Überdeckungsmengen

 $a \notin UC(B \cup \{a\})$ für alle $a \in A \setminus B$.



- Es ist möglich, dass a b in A nicht überdeckt, aber a b in B⊆A schon überdeckt (a C b in B).
 - Wenn a C b in B, dann gilt a C b auch in allen Teilmengen von B.
- Satz (Dutta, 1988; Dutta & Laslier, 1999; Peris & Subiza, 1999):
 Es gibt genau eine minimale Überdeckungsmenge (MC für "minimal covering set").
 - Beweis: Nächste Folie.

Eindeutigkeit von MC

- Lemma: Sei k≥2, B₁ und B₂ zwei Überdeckungsmengen und a_i für l≤i≤k Alternativen, so dass
 - für ungerade i, $a_i \in B_1$ und, falls i > 1, $a_i \in C$ a_{i-1} in $B_1 \cup \{a_{i-1}\}$ und
 - für gerade i, $a_i \in B_2$ und $a_i \subset a_{i-1}$ in $B_2 \cup \{a_{i-1}\}$.

Dann gilt für alle i>j, ai dominiert aj.

- ▶ Beweis: Induktion über k (Tafel).
- Satz: Der Schnitt zweier Überdeckungsmengen ist niemals leer.
- Satz: Der Schnitt zweier Überdeckungsmengen ist eine Überdeckungsmenge.
 - Die minimale Überdeckungsmenge ist die Schnittmenge aller Überdeckungsmengen.

Überdeckungsmengen (2)

- Ein äquivalentes spieltheoretisches Lösungskonzept wurde vom Spieltheoretiker Lloyd Shapley bereits 1953 benutzt.
- UC(MC(>))=MC(>)
 - Interne Stabilität (vgl. von Neumann-Morgenstern stabile Mengen)
 - Beweis: Tafel.
- In allen Dominanzgraphen gilt $MC(>) \subseteq UC(>)$.
 - ▶ Beweis: UC(>) ist eine Überdeckungsmenge.
- Satz: In allen Dominanzgraphen gilt MC(>) \cap BA(>) \neq \emptyset , MC(>) \cap SL(>) = \emptyset und MC(>) \cap CO(>) = \emptyset .

Eigenschaften von MC

Monotonie (M)

Eine Alternative bleibt in der Lösungsmenge, wenn sie gestärkt wird.

Supermengeneigenschaft (S)

Die Lösungsmenge ändert sich nicht, wenn Verlierer gestrichen werden.

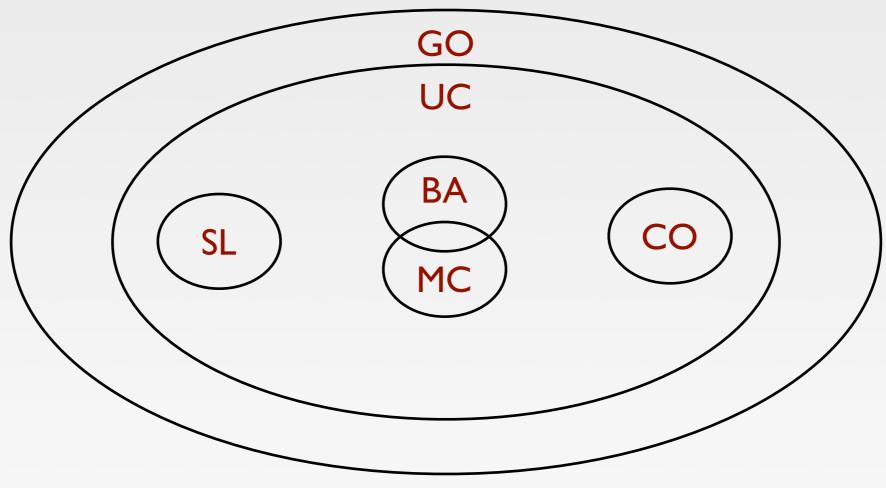
Idempotenz (I)

Die Lösungsmenge ist invariant unter wiederholter Anwendung des Konzepts.

Unabhängigkeit von Verlierern (U)

Die Lösungsmenge ist invariant unter Änderungen von Kanten, die nicht in der Lösungsmenge liegen.

Zwischenergebnisse



Copeland (1951)	СО	O(m ²)
Slater (1961)	SL	O(2 ^m)
Good (1971)	GO	O(m ²)
Unüberdeckte Menge (1977)	UC	O(m ³)
Banks (1985)	BA	O(2 ^m)
Minimale Überdeckungsmenge (1988)	MC	?

Berechnung von MC

- Es war lange Zeit unklar, ob die minimale Überdeckungsmenge effizient berechnet werden kann.
- Nicht offensichtlich, warum das Berechnungsproblem überhaupt in NP liegen sollte
 - Selbst das Verifizieren einer minimalen Überdeckungsmenge ist nichttrivial
 - Überdeckungseigenschaft ist einfach nachzuprüfen; das Problem ist die Minimalität
- Das Problem zu entscheiden, ob ein gegebener Knoten in MC liegt, ist in coNP.
 - MC liegt in allen Überdeckungsmengen
 - a ∉MC ⇔ Es gibt eine Überdeckungsmenge B mit a ∉B

Wdh.: Good Algorithmus

- Nehmen wir an, uns sei eine Teilmenge S der Good Menge bekannt. Dann müssen alle Alternativen, die nicht von allen Elementen aus S dominiert werden, auch zur Good Menge gehören.
 - Auf diese Weise erhalten wir eine (größere) Teilmenge der Good Menge.
 - Jede Alternative muss nur einmal betrachtet werden, denn nachdem ich sie zu S hinzugefügt habe, dominiert sie alle Alternativen außerhalb von S.
 - Für eine einelementige Startmenge hat dieser Algorithmus Laufzeit O(m²).
 - Man kann diesen Algorithmus m mal mit jeder Alternative als Startelement laufen lassen und erhält m dominante Mengen. Die kleinste dieser Mengen ist die Good Menge. Der resultierende Algorithmus hat die Komplexität O(m³).

I. Idee

Algorithmus analog zum Verfahren zur Berechnung der Good Menge

```
procedure MC(A)
for each i in A

B<sub>i</sub> = {i}
repeat
A' = { a ∈ A\B<sub>i</sub> | a ∈ UC(B<sub>i</sub>U{a}) }
B<sub>i</sub> = B<sub>i</sub> ∪ A'
until A' = Ø
end for
return minimal B<sub>i</sub>
```

- Problem: Es werden Alternativen hinzugefügt, die später überdeckt werden können.
 - Wie kann man die unüberdeckten Alternativen erkennen, die problemlos hinzugefügt werden können?

Ein wichtiges Lemma

- Lösung: Die Alternativen, die in der minimalen Überdeckungsmenge der bisher unüberdeckten Alternativen liegen, können problemos hinzugefügt werden!
- Lemma: $B \subseteq MC(A) \Rightarrow MC(A') \subseteq MC(A)$ wobei A' = $\{a \in A \setminus B \mid a \in UC(B \cup \{a\})\}$
 - Beweis: Tafel.
- Zu jeder Teilmenge des MC, lässt sich mit Hilfe obigen Lemmas eine neue Teilmenge des MC finden.
 - Diese neue Menge ist nur dann leer wenn die ursprüngliche Menge der MC war.

2. Idee

- $B \subseteq MC(A) \Rightarrow MC(A') \subseteq MC(A)$ wobei A' = {a \in A\B | a \in UC(B\U\{a\})}
 - ▶ $B \neq \emptyset \Rightarrow A' \subset A$
- Rekursiver Algorithmus

```
procedure MC(A)
for each i in A
Bi = {i}
repeat
A' = { a ∈ A\Bi | a ∈ UC(BiU{a}) }
Bi = Bi ∪ MC(A')
until A' = ∅
end for
return minimal Bi
```

- Problem: Exponentielle Laufzeit
 - Transitiver Dominanzgraph

Wdh.: Good Algorithmus (2)

- Mit Hilfe des folgenden Satzes können wir die Komplexität des Good Algorithmus von O(m³) zu O(m²) verbessern.
- Satz: In allen Dominanzgraphen gilt $CO(>) \subseteq GO(>)$.

Die essentielle Menge

- Nullsummenspiele und Nash Gleichgewichte
 - Die Adjazenzmatrix eines Dominanzgraphen kann als Spielmatrix eines Nullsummenspiels betrachtet werden.
 - Ein Nash Gleichgewicht ist ein randomisiertes Strategieprofil aus dem keiner der Spieler abweichen möchte.
- Def.: Die essentielle Menge (ES) besteht aus den Alternativen die in einem Nash Gleichgewicht des Adjazenzspiels mit positiver Wahrscheinlichkeit gespielt werden.
 - Laffond, Laslier, & Le Breton, 1993; Dutta & Laslier, 1999)
 - In Turniergraphen hat das Adjazenzspiel genau ein Nash Gleichgewicht.
- Satz: In allen Dominanzgraphen gilt $ES(>) \subseteq MC(>)$.

Berechnung der essentiellen Menge

- Satz: Die essentielle Menge kann in polynomieller Zeit berechnet werden.
 - Beweis:
 - Konstruktion eines linearen Optimierungsproblems (LP), dessen Lösung die Wahrscheinlichkeitsverteilung eines sog. quasistrikten Nash Gleichgewichts ist.
 - Lineare Optimierungsprobleme können in polynomieller Zeit gelöst werden [Khachiyan, 1979]

```
Algorithm 1 Essential set

procedure ES(A, >)

(m_{ij})_{i,j \in A} \leftarrow M_{A,>}

maximize \epsilon

subject to \sum_{j \in A} s_j \cdot m_{ij} \leq 0 \forall i \in A

\sum_{j \in A} s_j = 1

s_j \geq 0 \forall j \in A

\sum_{j \in A} s_j \cdot m_{ij} - s_i + \epsilon \leq 0 \forall i \in A

B \leftarrow \{a \in A \mid s_a > 0\}

return B
```

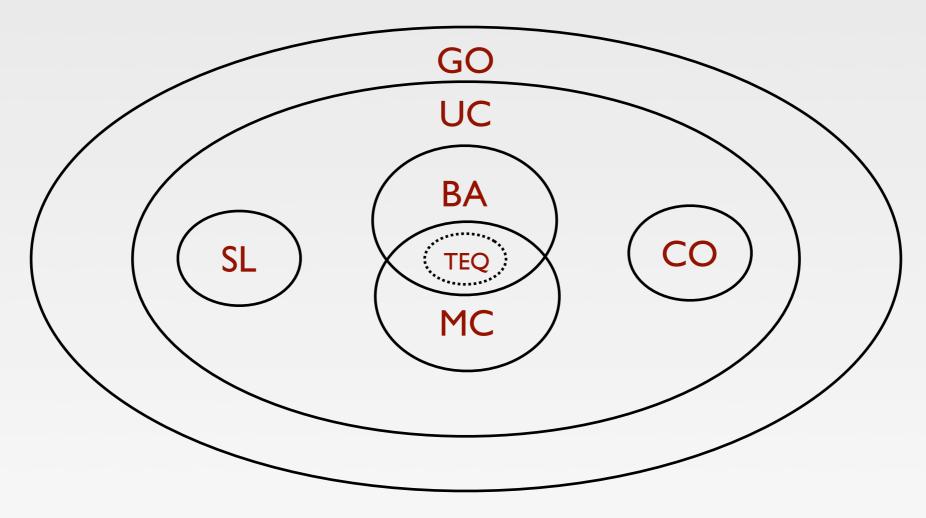

3. Idee

- $B \subseteq MC(A) \Rightarrow MC(A') \subseteq MC(A)$ wobei A' = {a \in A\B | a \in UC(B\U{a}))}
- $B = ES(A) \subseteq MC(A) \Rightarrow ES(A') \subseteq MC(A') \subseteq MC(A)$
- Die essentielle Menge der unüberdeckten Alternativen liefert neue Alternativen, die hinzugefügt werden können.

```
    procedure MC(A)
    B = ES(A)
    repeat
        A' = { a ∈ A\B | a ∈ UC(BU{a}) }
        B = B ∪ ES(A')
    until A' = Ø
    return B
```

- Dieser Algorithmus hat polynomielle Laufzeit.
 - Höchstens m Aufrufe des ES-Algorithmus

Ergebnisse



Copeland (1951)	СО	O(m ²)
Slater (1961)	SL	O(2 ^m)
Good (1971)	GO	O(m ²)
Unüberdeckte Menge (1977)	UC	O(m ³)
Banks (1985)	BA	O(2 ^m)
Minimale Überdeckungsmenge (1988)	MC	O(m ⁵)
Turniergleichgewichtsmenge (1990)	TEQ	O(2 ^m)

- Ein Heißluftballon mit vier Passagieren an Bord ist zu schwer.
 - Einer der Passagiere muss aussteigen.
 - Jeder Passagier kann, basierend auf seinen körperlichen Fähigkeiten, bestimmte andere Passagiere aus dem Ballon werfen. Von den restlichen Passagieren kann er selbst aus dem Ballon geworden werden.
- 1. Strategie: Jeder versucht einen beliebigen ihm unterlegenen Passagier aus dem Ballon zu werfen.
 - Es kommt zu einer Rangelei und der Ballon zerschellt.
 - Möglicherweise selbst wenn ein Passagier allen anderen unterlegen ist

2. Strategie

- B ist für A von Nutzen, wenn B einen Passagier bedroht, der A aus dem Ballon werfen kann.
- Es werden prinzipiell nur noch nutzlose Passagiere aus dem Ballon geworfen.
- Es gibt immer einen Passagier, der niemanden mehr bedrohen kann, und einen weiteren Passagier der obigen entfernt.

